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Abstract. Generic event detection is one of the main steps that natural language analysis still has to take to come to a stage in which computers 
really start to understand what a text is about. One approach to this task analyzes individual clauses into patterns of semantic roles that represent 
fundamental functional categories that reflect how humans conceptualize reality. We have designed a method for learning these domain-
independent semantic roles from an annotated corpus by combining notions of frame theory and of systemic-functional grammar and simplifying 
the process to a pattern classification process. We have conducted a number of experiments which indicate that a regular mapping exists between 
superficial lexical, morphological and positional features in the surface structure of a text and its functional-semantic deep structure and that we 
can therefore semantically classify phrases using only superficial language analysis. 
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1. Introduction 
 
The interest in text understanding is as old as artificial intelligence (AI) itself. Traditionally, the relationship between 
linguistic expressions and event semantics is often encoded in knowledge structures such as semantic frames 
(Minsky, 1975; Schank, 1972). In information extraction (IE) systems, these expressions are mapped into the frames 
to extract event information from text. Such an approach has two main obstacles: manually building large sets of 
semantic frames or annotating a corpus to build them automatically is an extremely labor-intensive task; and it is 
hard to construct a coherent and consistent frame set because of the inherent ambiguity of natural language semantics. 
In this article we present an approach that incorporates notions of systemic-functional grammar into frame semantics. 
Since the former is a generic theoretical-linguistic framework for understanding text, our approach will largely avoid 
the two obstacles. Systemic-functional grammar starts from the observation that humans perceive reality through a 
mediating set of conceptual categories that are reflected in the lexico-grammatical constructs of a language (Halliday 
& Matthiessen, 1999). Instead of the ad-hoc semantic roles of traditional IE, it allows us to identify domain-
independent categories that represent actions and states in the real world. We have designed a method for detecting 
these categories in sentences by interpreting the frame building process as a pattern classification task and we have 
proved that it can be used to detect generic semantic roles in a reliable way. Eventually, this will allow text 
understanding and IE to break free from domain-dependence and give them a basic understanding of the events 
expressed in a text. In the next section, we will define our problem and justify our research. Section 3 describes our 
methodology from the point-of-view of linguistics and machine learning. In section 4, we will describe our 
experiments and their results; section 5 is a discussion of the results and of the application potential of our technique. 
Before the conclusion, we give a concise history of semantic roles and mention some related research. 
 
 
2. Problem definition and goal of the research 
 
It is one of the greatest frustrations of AI, natural language processing (NLP) and related domains that computers so 
far have stubbornly failed to acquire the ability to relate utterances in a text to some kind of conceptual model of the 
world, notwithstanding the research efforts that were made during the last decades. Apart from the computational 
complexity of the task, there are two main obstacles for putting real understanding into computers. A first problem is 
that determining the exact meaning of an utterance requires a considerable amount of knowledge about the text and 
the world in general, making that any sophisticated form of natural language understanding requires the existence of 



– 2 – 

a comprehensive world model (or domain model), a linguistic model and conversational models to interpret the 
function of an utterance in the flow of reasoning. 
A second problem is that – unlike in areas such as morphology or syntax – there is no agreement at all about which 
relationships between language and meaning exactly exists and how they should be formally implemented in a 
computational-linguistic framework. Consider for example the following sentence.  
 

(1) The prime minister dissolved parliament. 
 
There will be little objection to a part-of-speech tagger marking the word 'parliament' as a noun, since that is about 
the only word class that can be assigned to the word, and similarly, a syntactic parser will almost always classify 
'parliament' as a noun phrase that is dominated by the verb phrase with main verb 'dissolved'. However, a uniform 
semantic classification does not exist, neither on the level of individual words, nor on any larger scale. 
A distinction between 'semantics of truth' and 'semantics of understanding' (i.e. conceptual semantics) was first made 
by Fillmore (1985). Truth semantics deals with the sufficient and necessary conditions for making valid judgments 
about event descriptions, i.e., it primarily deals with the validity of statements that refer to real-world events and is 
only indirectly concerned about their verity. A major advantage of a truth-semantic framework is that it is inherently 
a formalized model for describing linguistic statements of events and is therefore able to perform operations on them 
and to keep track of their truth-conditional consistency. Unfortunately, the rigidity of a logical framework does not 
always correspond to human notions of what is true or false and in itself truth semantics might be able to say whether 
a statement is valid or not, but it cannot tell anything about what exactly the statement is about. In many ways, a 
semantics of understanding or conceptual semantics is complementary to truth semantics, since it describes the 
relationship between linguistic entities and their conceptualization of events in the real world. Conceptual 
frameworks do not specifically aim at assessing the validity of an expression, but rather describe how language users 
would interpret it in terms of an internalized cognitive world model. From all theories, we will here only consider 
frame theory and systemic-functional grammar. 
In frame theory (Minsky, 1975; Winograd, 1975) event types are encoded as semantic frames, each consisting of a 
number of attribute-value pairs called frame elements. An expression of an event is represented by selecting an 
appropriate frame and instantiating each frame element by mapping segments of the expression into the value slots in 
accordance with constraints on those values. For instance, we could define a semantic frame for the meaning of 
'dissolve' as it is used for the disbandment of institutional bodies. There are likely to be two obligatory participants 
involved: one that performs the act of dissolving and another that is being dissolved (we will disregard adverbials 
such as time, place or manner). As a constraint, both participants have to be expressed as a noun. The result is a 
frame structure such as Figure 1a, which can be instantiated with chunks of sentence (1) as in Figure 1b. 
 

 
 Frame: dissolve-institution 
 
     event :     <value1>  
     dissolver : <value2> [noun] 
     dissolved : <value3> [noun] 
 

  
 Frame: dissolve-institution 
 
     event :     'dissolved' 
     dissolver:  'the prime minister' 
     dissolved:  'parliament' 

   

(a)  (b) 
 

Figure 1. Frame representation (1) (a) and its instantiation by sentence (1) (b). 
 
Although a frame-semantic description of complex events did not turn out to be as easy as it initially seemed, the 
idea of using frame-like structures for detecting individual events has been a constant in the AI and NLP 
communities up to this day. Despite its obvious potential, frame theory has some major drawbacks. Any realistic 
system needs a huge amount of semantic frames; manually building them is an extremely labor-intensive task; and 
designing an internally consistent frame set is far from straightforward. As a result, systems relying on frame theory 
have often been developed in an ad-hoc fashion for very restricted domains, leading to high maintenance and 
portability costs. The introduction of a generic semantic framework can solve these problems by providing internal 
consistency and a domain-independent classification.  
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Systemic-functional grammar (Halliday & Matthiessen, 1999) is such a framework. Its most basic assumption is that 
humans perceive reality through a mediating set of fundamental conceptual categories, which are covert but are 
mirrored in the lexico-grammatical constructs of a language. Since these categories reflect that human observers 
conceive the world as series of actions and states, a linguistic expression can be analyzed in terms of the event that it 
describes, the things and persons participating in it, and its setting. In the center of a functional-semantic pattern is a 
process of a particular type, which consists of a number of semantic roles: the process role itself describes an event 
in the real world; participant roles represent real-world entities participating in the event; and circumstantial roles 
describe the general setting. Using the functional proto-roles Agent and Patient, we can analyze sentence (1) as in 
Figure 2. 
 

Process type: Action 
Participant: Agent Process: Action Participant: Patient 

The prime minister dissolved parliament 
 

Figure 2. Functional analysis of sentence (1) with proto-roles of Agent, Action and Patient. 
 
A crucial difference between frame theory and systemic-functional grammar is that the latter organizes linguistic 
expressions into a coherent classification of domain- and language independent conceptual categories instead of ad-
hoc frame elements. With the former being able to translate events descriptions into a computer-readable format and 
the latter connecting language and meaning, it seems like an obvious step on the way to automatic event detection to 
combine both into one framework. 
Because generic semantic roles are only indirectly realized in language, they cannot be easily detected. Our main 
research aim is to discover whether and to what extent it is possible to automatically identify them in the phrases of a 
text based on their superficial properties (lexical, morphosyntactic and positional information). On a more theoretical 
level this corresponds to the search for a regular mapping between the lexical, morphological and syntactic surface 
structure of language and the functional-semantic deep structure. On an implementational level our goal is to build a 
semantic tagger or classifier that assigns generic roles to free text, using as little external resources as possible. We 
specifically aim at discovering roles that are domain-independent and we will learn all mapping rules from an 
annotated corpus with standard machine learning techniques.  
 
 
3. Methodology 
 
3.1. Linguistic framework 
 
Frame theory gives us a formalized framework for representing event descriptions, but it largely fails to generalize 
across individual domains and to produce a consistent theory of functional event semantics. Systemic-functional 
grammar has given us such a theory at a rather informal level, making it not directly useful for actual 
implementations. We have tried to integrate both into one formal frame-theoretical model. The process types of 
systemic-functional grammar correspond to uninstantiated generic event frames; functional roles to frame elements; 
and assigning functional roles to mapping them into the appropriate frame elements. Automatically determining a 
mapping between the surface structure of linguistic utterances and the semantic deep structure simply consists of 
learning which lexical and morphosyntactic constraints apply on the frame elements. 
The systemic-functional theory we use was developed by Michael Halliday (Halliday, 1994). He distinguishes five 
major process types. Actions and states in the external world are modeled in material processes; inner experience is 
expressed in mental processes; relational processes classify or identify entities or events relative to each other or to a 
abstract category such as color, size, etc.; behavioral processes express typical forms of physiological behavior; 
verbal processes model what one says or thinks; and existential processes state the existence of something. 
 

(2) The lion chased the tourist.    (material process) 
(3) She felt distinctly unhappy about his decision. (mental process) 
(4) His dog is his best friend.    (relational process) 
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(5) He screamed with fear.    (behavioral process) 
(6) The woman answered: "I really have no idea." (verbal process) 
(7) There are birds without feathers.   (existential process) 

 
Each of these process types has the potential to generate a number of functional role patterns, which all consist of the 
process role itself, a set of participants, and some optional circumstantial roles. For sentence (1), this results in the 
analysis in Figure 3. 
 

Participant: Material: Actor Process: Material Participant: Material: Goal 
The prime minister dissolved parliament 

 
Figure 3. Hallidayan analysis of sentence 1.  

 
The functional analysis reveals that 'dissolved' expresses an action in the real world, that this action has a participant, 
the Actor, who does the dissolving and a participant that is dissolved, the Goal. An important aspect of our 
classification is that every semantic role has been defined as a list of inclusion relationships (e.g. participant – 
participant of a material process – actor of a material process), which makes it easy to add additional layers of detail. 
The process and participant roles in Halliday's systemic-functional grammar all behave in a more or less regular way 
because they are a manifestation of the transitivity system of a language, i.e., the system that expresses the flow of 
individual events as an interaction between regular alternations in the order of the phrases in a clause and the lexical 
and morphological properties of the words in these phrases. For instance, the disbandment of an organization like a 
parliament can only be expressed in a limited number of constructions and with certain lexical items, as sentences (8) 
to (11) illustrate (an asterisk indicates invalid constructions). 
 

(8) The prime minister dissolved parliament. 
(9) Parliament was dissolved by the prime minister. 
(10) Parliament was dissolved. 
(11) * Parliament dissolved. 

 
It would be very hard to detect these alternations or constraints on their behavior directly, especially because they 
involve several linguistic subsystems, but fortunately systemic-functional grammar presupposes a realizational chain 
in language generation: the semantic deep structure of language is realized in its surface structure through a number 
of consecutive and predictable linguistic levels (cf. Halliday & Matthiessen, 1999, p. 4).1 Going up the chain, it can 
be assumed that a constellation of surface features will reflect the semantic deep structure and although a one-to-one 
correspondence between these antipodal linguistic strata will certainly not exist when features are considered in 
isolation, it might be possible to trace certain combinations of features back to their deep-semantic sources. 
Our current research aims at discovering whether and how we can automatically detect the transition from a sentence 
such as 'The prime minister dissolved parliament' to a generic semantic role pattern such as the one in Figure 3, 
taking into account only superficial linguistic features. At present, we limited the functional patterns to the ones who 
have a verbal group for a process role. We also excluded a number of circumstantial roles, restricting our semantic 
classes to the ones listed in Table 1.  
 
 
3.2. Machine learning framework 
 
From a machine learning point-of-view, we consider the detection of semantic roles as a pattern classification task 
based on the contextual features of their corresponding phrases in a clause. For each verb, we will learn a set of 
discriminative surface features that allows us to relate semantic roles to particular instances of that verb in a text. The 
classification has the following steps. First, the textual data used in training and testing is preprocessed. Sentence 
boundaries are detected, the corpus is tagged with a part-of-speech tagger and rudimentary noun and verb phrase 

                                                        
1 This idea was already implicitly present in the work of Panini (see Kiparsky, 2000). 
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boundaries are indicated. Then, the corpus is manually labeled with semantic roles and a number of training and test 
sets are generated. For each semantic role, contextual features are extracted and the classifier is trained on the labeled 
data. In the testing phase, the semantic class with the highest probability is assigned to unlabeled data. In an optional 
phase, the classification is refined by using information on valid co-occurrences of individual semantic roles in 
semantic role patterns. 
 

Table 1. List of semantic roles used in the experiments. 
 

   

Material Process 
 Actor in a Material Process 
 Goal in a Material Process 
 Recipient in Material Process 
 Client in Material Process 
 Entity Range in a Material Process 

 Intensive Attributive Relational Process 
Possessive Attributive Relational Process 
Circumstantial Attributive Relational Process 
 Carrier in an Attributive Relational Process 
 Attribute in an Attributive Relational Process 
 Beneficiary in an Attributive Relational Process 

 Process Range in a Material Process  Intensive Identifying Relational Process 
Mental Process of Perception 
Mental Process of Affection 
Mental Process of Cognition 
 Senser in a Mental Process 

 Possessive Identifying Relational Process 
Circumstantial Identifying Relational Process 
 Identified in an Identifying Relational Process 
 Identifier in an Identifying Relational Process 

 Phenomenon in a Mental Process  Circumstance of Extent: Distance 
Behavioral Process 
 Behaver in a Behavioral Process 

 Circumstance of Extent: Duration 
Circumstance of Extent: Frequency 

Verbal Process 
 Sayer in a Verbal Process 
 Verbiage in a Verbal Process 
 Target in a Verbal Process 
 Receiver in a Verbal Process 

 Circumstance of Location: Place 
Circumstance of Location: Time 
Circumstance of Motion: Place towards 
Circumstance of Motion: Place from 
Circumstance of Motion: Time 

Existential Process 
 Existent in an Existential Process 

  

   

 
In our selection of contextual features for the pattern classification task, we did not extract a limited number of 
features based on any prior knowledge about their fitness, but rather selected as many potentially relevant features as 
possible, relying on the classifiers to discriminate good from bad features. These features include word stem, word 
class (part-of-speech) and general word class, the position relative to the dominating process role, the properties of 
that process role, and a composite feature that simulates subject-object distinctions. Figure 4 presents all the features 
corresponding to the first phrase in Figure 3. 
 

'The prime minister' 
 � 1: word stem:   'the', 'prime', 'minister' 
 � 2: word class:   determiner, base adjective, common noun 
 � 3: general word class:  determiner, adjective, noun 
 � 4: relative location:  before process role 
 � 5: absolute location:  1 position before process role 
 � 6: word stem of process:  'dissolve' 
 � 7: word class of process:  past simple verb 
 � 8: general word class process:  verb 
 � 9: subject/object simulation:  head of role = noun & head of process = 
   verb & role before process 

 
Figure 4. Surface features for 'The prime minister' in Figure 3. 

 
Features 1-3 and 6-8 are extracted for the head of each relevant phrase and for the first and last token of their right 
and left context, as shown in Figure 5. For each training and test example these features are transformed into a fixed-
length vector, with nominal and numeric values being translated to binary features for some of the classifiers (e.g., 
naïve Bayes).  
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left context HEAD right context 
     

the huge American company car of our new executive director 
 

Figure 5. Examples of selection of tokens per phrase (selected tokens in bold). 
 
We trained the resulting data sets on a number of classifiers, all of which have been successfully applied to NLP in 
the past. Since we do not focus on the development of novel pattern classification algorithms, we mostly used 
existing software. 
k-Nearest neighbor classification does not learn by generalizing examples and separating positive from negative 
ones to identify a class, but simply compares the feature vector of a new case with the vectors of existing examples 
that are stored in a database. Assuming that similar instances have similar classifications, it identifies for each new 
case the k closest examples for which the similarity exceeds a certain threshold and collects its class. Geometrically, 
no general form exists to draw a boundary between the classes, because the nearest neighbor can produce any 
arbitrarily complex surface to separate classes based only on the configuration of the sample points and their 
similarity or distance metric to one another. We have used a k-nearest neighbor classifier that uses a simple function 
for computing the distance between the test and training examples (Aha, Kibler & Albert, 1991). The distance 
function takes the square root of the sum of the distances between the individual features xi and yi defined as f(xi, yi) = 
(xi-yi)² for numeric valued attributes and f(xi, yi) =  (xi ≠ yi) for Boolean and symbolic-valued attributes. In our 
implementation, multiple similar examples all vote for a class to be assigned with an equal weight. Nearest neighbor 
classification performs very well when good precedent examples with accurate, non-noise features are available for 
training. Also, the avoidance of generalization or abstraction has some advantages in NLP, since it is often 
impossible to use general rules without considering the exceptions (Daelemans, 1999). 
It is possible to learn the probability distribution of a feature or a combination of features from a set of training 
examples, e.g. with maximum likelihood estimation. In naïve Bayes classification (Mitchell, 1997, 154 ff.) 
computations are simplified by assuming that the probabilities of the occurrence of features are independent. The 
probability estimate of an individual feature is based on the co-occurrence of a class and a feature in the training 
corpus. The probability of class membership of a new instance is computed as the product of the probabilities of 
class membership of the features of this instance (possibly corrected by an a priori probability of the class 
distribution in the training examples) and the k classes with the highest probability are assigned to a test example. 
Because maximum likelihood is only estimated from a limited sample of training data that is possibly noisy, our 
naïve Bayes classifier corrects the maximum likelihood estimation by assuming a normal distribution. Although 
naïve Bayes classification is a simple approach to pattern classification, it is often able to compete with more 
sophisticated (and computationally more expensive) classifiers. It has been successfully applied in word sense 
disambiguation problems (e.g., Pedersen, 2000). 
Maximum entropy modeling (MEM) computes the probability distribution with maximum entropy that satisfies the 
constraints set by the training examples (Berger, Della Pietra & Della Pietra, 1996; Ratnaparkhi, 1997). This 
distribution has an exponential form:  

( , )

1

1
( ) j

k
f c o
j

j

P o c
Z

α
=

= ∏  

where o refers to the outcome or class; c to the context; Z is a normalizing constant; and k the number of contextual 
features. Normally, it uses an iterative procedure such as generalized iterative scaling (GIS) to estimate the model 
parameter αj  of each feature function fj (c, o).  The latter is a binary function that is true when the context expressed 
by the function is true and zero otherwise. For a new instance, membership for each class is computed and the k 
classes with the highest probability are assigned. In contrast to naïve Bayes, the model takes into account possible 
dependencies between features and MEM also accurately discriminates relevant from irrelevant features during 
training, thus relieving the implementer from selecting accurate features manually. In NLP, MEM has been 
successfully used for parsing (e.g., Charniak, 2000), word sense disambiguation (e.g., Chao & Dyer, 2002) and 
named entity recognition (e.g., Chieu & Ng, 2002). 
Decision-based learners learn classifying expressions (usually rules or trees presented in a logical formalism) from a 
set of examples. Most of these algorithms do not exhaustively search through all possible combinations of features or 
feature relations to find the rules that best discriminate the positive from the negative examples for a class, but since 
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our feature set is limited, the effect of this greediness is not very large. A new case is classified by applying the 
appropriate classifying expression and assigning the corresponding class. Our propositional learner is an improved 
version of the C4.5 algorithm (Quinlan, 1993), in which a top-down decision tree is built by iteratively selecting the 
feature with the largest information gain or expected reduction in entropy, which is computed by using it to partition 
the example set according to the target classification, and adding it as a node in the decision tree. At each iteration, a 
descendant of the node is created for each possible value of the selected attribute and the training examples are sorted 
appropriately. The advantage of decision-based learning is that the expressions that are learned can be interpreted 
and altered manually and that feature dependencies are naturally modeled. Decision rules have been used in semantic 
classification and information extraction (e.g., Hayes, 1992). 
Currently, support vector machines (SVM) are successfully used for pattern classification (Vapnik, 1995). An SVM 
finds the hyperplane in the n-dimensional feature space that best separates positive and negative examples in the 
training set with maximum margins. Unlike with decision-based learning, the number of features does here not 
influence the results and SVMs have the ability to model exceptions by allowing a limited amount of training errors. 
Since both are useful properties for NLP, SVMs are increasingly used in, e.g., named entity recognition (Isozaki & 
Kazawa, 2002). 
Semantic roles can only occur in a semantic role pattern in a limited number of possible combinations and the co-
occurrence of two or more semantic roles is always dependent. Information about these dependencies can be 
manually acquired and implemented as symbolic knowledge (or learned from a corpus) and can further improve 
semantic classification. This could be done by combining the probability ranking of each semantic role provided by 
the classifier with the knowledge of possible combinations of roles to compute the probability of each valid 
combination of roles (e.g., as average of the individual probabilities of the roles). We have integrated this approach 
in the MEM classifier, but it could be added to any classifier that provides a probabilistic ranking. 
 
 
4. Experiments 
 
4.1. Experimental setup 
 
Our method for learning the correlation between superficial linguistic features and individual semantic roles relies on 
an annotated corpus. For all trainings and tests we have used a subset of the new Reuters Corpus (Reuters Corpus. 
Volume 1: English Language, 1996-08-20 to 1997-08-19).2 Since corpus annotation is a labor-intensive task and we 
had limited resources, we selected a relatively small number of verbs for evaluation that was representative for the 
body of verbs in English. In order to avoid bias, we simply picked an initial set of 37 verbs based on their relative 
frequency in the British National Corpus (Leech, Rayson & Wilson, 2001), eliminating all verbs that could be used 
as an auxiliary. We selected four verbs at the top of the BNC frequency list (say, make, go and see); 10 verbs in the 
middle of the list with a relative frequency of 31 occurrences per million words, one of which had to be discarded 
because it did not occur in our training corpus; and 23 verbs with a relative frequency of 16 per million words, six of 
which had to be discarded for the same reason. When semantic roles were learned for each verb separately, another 
two medium-frequency verbs and eight low-frequency verbs were rejected because their data sets did not contain at 
least 10 separate semantic roles and they could therefore not be tested with ten-fold cross-validation. In experiments 
with aggregated example sets (see Table 2), these verbs have been included. Below is an overview of all verbs that 
were used in the experiments. 
 

High-frequency verbs (+1500 occurrences per 1m words in BNC): 
make (1420), go (617), say (950), see (1036) 

Medium-frequency verbs (31 occurrences per 1m words in BNC): 
award (17), capture (114), deserve (21), distribute (37), enhance (18), sweep (16), tackle (16) 
semantic roles < 10: bury (3), doubt (9) 

Low-frequency verbs (16 occurrences per 1m words in BNC): 
aid (21), decrease (23), dissolve (36), endorse (12), import (50), schedule (49), ship (28)  

                                                        
2 Available at http://about.reuters.com/researchandstandards/corpus/; we used documents 77363newsML to 80419newsML. 
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semantic roles < 10: coincide (6), confess (3), contract (3), creep (7), dispose (3), formulate (6), impress (7), sponsor (9), 
tempt (3), spare (3) 

 
In the preprocessing phase the entire corpus is cleaned; a part-of-speech tagger (with LTPOS; see Mikheev, 1997) 
assigns word classes to each token; noun phrases, verb phrases and prepositional phrases are detected (with 
LTChunk; see Mikheev, 2000); the word stem is derived for each token with a dictionary. A job student semantically 
annotated the resulting corpus. He was instructed to use Halliday (1994) as a manual and apart from some very 
general remarks concerning methodological issues, he was free to interpret the rules derived from it as he thought fit. 
For each verb except for make, he checked the annotations for consistency. In a one-month period the student 
managed to annotate 1450 semantic role patterns, corresponding to 4543 individual roles. The annotated texts were 
translated to an intermediate XML-format from which the feature vectors that are used in the experiments were 
extracted. 
In preliminary experiments, we used C4.5 (Quinlan, 1993) for learning semantic role patterns and we evaluated the 
output manually (De Busser, Angheluta & Moens 2002). For most of the experiments in this article, we used version 
3.3.6 of the Waikato Environment for Knowledge Analysis (Witten & Frank, 2000).3 The classifiers borrowed from 
this package are: a k-nearest neighbor model with k = 1 (B); a naïve Bayes algorithm ( C); J4.8, a Java implementation 
of C4.5 (E); and a support vector machine with a linear kernel function (F). All these tests learned individual 
semantic roles without combining them into semantic role patterns and were performed using ten iterations of ten-
fold cross-validation (i.e., 100 runs) with randomized example order in the training and test set. We also used an 
open-source maximum-entropy classifier4, which was evaluated with single ten-fold cross-validation. In a separate 
experiment, we implemented an optional refinement module of this classifier that concatenated the roles into 
semantic role patterns. In all experiments except for one (Table 2), roles were learned for each verb separately. 
For each verb-per-verb training and for trainings on the aggregated training set, an average accuracy is calculated. 
The verb-specific classifications are also evaluated by macro-averaging (A1) and micro-averaging (A2), the latter 
giving a more realistic measurement when the test set reliably reflects a realistic distribution of verb occurrences. A1 
is the sum of the average accuracies of individual verbs averaged over the number of verbs; A2 is averaged over the 
number of instances and is calculated as 

( )
1

1

=2
v v

v

v

v

i A

i
A

×∑

∑

 

(where v = the number of verbs, iv= the number of training instances per verb and Av its average accuracy). All 
classifiers are compared to a baseline, which builds a one-level binary decision tree for each data set. 
 
 
4.2. Results 
 
In our preliminary experiments (De Busser et al., 2002), we learned semantic role patterns as a concatenation of case 
roles, following the assumption that the interaction between individual roles is best captured in the learning process 
by treating all semantic roles in a single pattern as one homogenous block. These experiments were especially 
valuable for acquiring better insights into which features play a role in the classification process. In our present 
experiments we learn semantic roles based on information about their internal structure and their relation to the 
process role. This corresponds to the idea in functional linguistics that the process role is central to the semantic 
pattern and all other roles are defined in relation to it. Individual roles are recombined into patterns in a separate 
phase. 
In a first experiment, we compared a number of different classifiers (Table 1). All score well above the baseline, the 
SVM being slightly better than the others. On the whole A1 is a little higher than A2, mainly because the former 
overemphasizes low and medium frequency verbs and these are likely to perform better than high-frequency verbs 
since their semantic behavior is less varied. There is a relatively large difference in accuracy between separate verbs: 
                                                        
3 Available at http://www.cs.waikato.ac.nz/ml/weka/ 
4 Available at http://maxent.sourceforce.net/index.html 
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even when considering 'award' and 'endorse' as outliers, the results of the SVM range between 70.47 and 97.98 % 
(with a baseline of 43.88 % for A2). As far as we could detect, this difference cannot be straightforwardly correlated 
to any single factor in the classification process and it is likely that it largely depends on the semantic complexity of 
individual verbs. The verbs 'award' and 'endorse' are the only two that really perform exceptionally badly, but this is 
caused by a lack of training examples (the decision trees that J4.8 constructs for both verbs are well-formed and 
intuitively correct from a linguistic point-of-view). 
 

 Table 2. Comparison of classifiers trained on individual verbs. 
 

 
        

  A B C D E F 

 No. 
Inst. Baseline 1-nearest 

neighbor 
Naïve 
Bayes 

Maximum 
entropy* J4.8 SVM 

        

aid 21 44.3333 76.0000 88.0000 80.0000 76.0000 85.5000 
award 17 13.5000 56.0000 47.5000 55.0000 53.5000 53.0000 

capture 114 57.9167 90.0606 85.6288 91.2879 91.4773 89.0985 
decrease 23 72.3333 63.1667 77.1667 73.3333 63.1667 83.6667 
deserve 21 51.6667 96.0000 100.0000 95.0000 95.5000 86.6667 
dissolve 36 58.1667 94.0000 95.0000 94.1667 94.5000 95.5833 

distribute 37 48.5000 84.1667 81.7500 85.8333 84.1667 82.3333 
endorse 12 33.0000 34.5000 59.0000 35.0000 34.5000 51.0000 
enhance 18 33.0000 90.0000 95.0000 90.0000 90.0000 95.0000 

go 617 50.3133 73.4130 69.5843 78.4321 74.4823 78.6134 
import 50 47.4000 80.0000 92.6000 88.0000 79.6000 91.0000 
make 1420 28.9437 59.7606 58.3451 67.8873 62.5423 70.4718 
say 950 63.3684 97.5895 96.7789 98.4211 97.6737 97.9789 

schedule 49 63.1500 63.2500 71.8000 73.5000 67.2500 74.0500 
see 1036 39.1903 68.2036 68.1972 73.9320 72.8757 74.1612 
ship 28 64.5000 71.8333 68.6667 76.6667 71.8333 72.0000 

sweep 16 37.5000 72.0000 69.0000 60.0000 75.0000 75.0000 
tackle 16 25.0000 89.5000 95.0000 80.0000 89.5000 95.0000 

        

A1  46.2101 75.4608 78.8575 77.5811 78.7720 80.5624 
A2  43.8752 73.6433 72.8053 78.6841 75.8166 79.6267 

        

  

*: Ten-fold cross-validation without iterations. 
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Figure 6. Influence of the size of the example set on accuracy for the verb 'see'. 

 
We have tested whether our general setup causes overfitting on large training sets, training (F) for subsets of the data 
set of the verb 'see', with all settings identical to previous experiments (Figure 6). We randomized the example order 
and produced data sets from 10 % to 100 % of the originally size with a 10 % interval. The X-axis indicates the 
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number of examples in the data set; the line plotted in bold is the accuracy averaged over 10 iterations of 10-fold 
cross-validation; the bottom line the minimum value occurring in the 100 folds for each data set; and the top line the 
maximum value for each data set. As expected, the accuracy increases and stabilizes around 74 % at 310 training 
examples (± 100 semantic role patterns) with the minimum and maximum values converging at a 20 % distance. No 
overfitting occurs when more training examples are added. 
 

Table 3. Comparison of classifiers trained on aggregated example set. 
 

        

  A B C D E F 

 No. 
Inst. Baseline 1-nearest 

neighbor 
Naïve 
Bayes 

Maximum 
entropy* J4.8 SVM 

        

Accuracy 4543 21.0434 70.1365 67.7063 76.8000 N/A N/A 
        

 
*: Ten-fold cross-validation without iterations. 

 
In a third experiment, we aggregated the example sets of individual verbs and thus created one large set containing 
all verbs combined (see Table 3). All other parameters are identical to the first experiment. Instead of learning which 
surface features are indicative of the semantic roles that accompany individual verbs, this aggregated set learns 
similar functional behavior across verbs. This comparative training could be used as a classification measure 
complementary to the one above and to learn semantic roles for low-frequency verbs that have enough related verbs 
in the training set. The accuracy of all classifiers on the aggregated set dropped quite a bit compared to A1, but these 
results are to be expected given the fact the complexity of the classification task increased (e.g., the average number 
of values per feature rose from 6.42 for A1 to 10.06). For (E) and (F), no results could be generated due to excessive 
complexity of the classification. 
In a fourth experiment, we identified the influence of disabling different features in the classification process. For all 
datasets of individual verbs, we constructed 10 subsets in which particular features are disabled (FC1-FC10). All 
datasets were trained on (F) with all settings identical to previous experiments. It should be noted that all subsets still 
have a feature configuration that makes sense from a linguistic point-of-view and is therefore discriminative at least 
to a minimal extent (e.g., we did never disabled all grammatical or positional features). 
 

Table 4. Influence of disabling features. 
 

    

 Feature configuration (FC) A1 A2 
    

1 Original dataset 80.5624 79.6267 

2 
All features of the head of role and process, relative location and 

subject/object simulation 
81.5595 76.6298 

3 Previous + absolute location 82.1555 77.0137 

4 All features except for those left of the head of role and process 80.1620 79.5500 

5 All features except for those right of the head of role and process 80.7182 77.1836 

6 All features except for relative location 79.3843 79.2572 

7 All features except for absolute location 80.4101 79.5826 

8 All features except for word class 81.0504 78.7390 

9 All features except for the general word class 80.3650 80.0087 

10 All features except for the stem 76.2375 71.8741 
    

 
Results remain quite stable across the different subsets. Only when all lexical features are disabled (FC10), accuracy 
drops considerably (with 4.32 and 7.75 % for A1 and A2 respectively). As expected the SVM is quite robust with 
regard to noisy and superfluous features. 
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In a fifth rather limited experiment, we attempted to improve semantic role detection by using knowledge of valid 
combinations of semantic roles in semantic role patterns as they might appear in sentences. These were manually 
acquired via knowledge of systemic-functional theory. The most probable valid combination of roles was computed 
for each clause of the test set and role assignment was corrected accordingly. We could improve the accuracy of all 
verbs except for 'schedule' and boost the A2 average to 84.16 %, which indicates that the co-occurrence of semantic 
roles in a role pattern is dependent. In the future we would like to better define the exact nature of this dependency 
with more elaborate experiments. 
 
 
4.3. Discussion 
 
Our experiments prove that semantic roles are learnable from superficial linguistic features and that our methods 
could be implemented in an operational system. All classifiers performed well above the baseline and the results are 
quite consistent across classifiers. On average, the SVM with linear kernel performed somewhat better than its 
immediate followers. There is a fairly large difference in accuracy between separate verbs, but this is a natural 
consequence of the fact that all verbs have their own distinct semantic behavior and complexity. 
There appears to be an upper bound to learning semantic roles that is relatively remote from the ideal of a perfect 
score and for which it is quite difficult to pin down an exact reason. We have manually checked all decision trees 
that were generated by J4.8 for overfitting and feature imbalances, but all trees that were learned corresponded to 
basic linguistic intuitions. Even for verbs with small example sets, J4.8 usually constructed trees that first used 
positional and grammatical features and only in the leave nodes resorted to lexical features (and even then only quite 
sparsely), which corresponds to how an average human would decide which functional role should be assigned to a 
particular phrase. Although it is possible that we simply need to extract more superficial linguistic features, it is 
difficult for us to imagine what exactly those features could be and how we could extract them from texts without 
using complex natural language analysis. 
An important insufficiency is that we do not use any contextual features for learning individual semantic roles. Our 
last experiment indicates that adding information about semantic role co-occurrences will improve accuracy and in a 
semantic tagger this information could be added directly to the training process. Some informal experiments indicate 
that accuracy might improve up to 10 % in that case, but it was impossible to design simple and objective evaluation 
measures for this setup. A last and insurmountable barrier will always prevent semantic classification from being 100 
% accurate: natural language semantics are inherently ambiguous. Sometimes, it is difficult to assign a single correct 
semantic role to a particular phrase because of the ambiguity of a verb or because an assignment relies on textual or 
world contexts, or it is even impossible because it depends on the interpretation of individual readers. 
To a certain extent our experimental setup is an abstraction of the situation in which a semantic tagger would operate. 
Phrase boundary detection was only performed semi-automatically, since we only had access to a basic phrase 
chunker. In addition, by avoiding errors in the phrase boundary detection phase, we were able to identify the 
performance of the classification process itself more accurately and to design simple and objective evaluation 
measures. This makes that the accuracies in our tests are higher than they would have been in an operational system. 
Another simplification is that we did not yet include some circumstantial elements in semantic classification. A 
disadvantage of all systems that learn from annotated corpora is that it is extremely labor-intensive to annotate a 
corpus. In our case, the annotator needed one month to annotate 1450 semantic role patterns (or 4543 individual 
semantic roles). This is not as bad as it sounds. In a conservative estimate, an annotator could tag roughly 15 to 20 
high-frequency verbs per person month, covering 14% to 16% of verb tokens of the British National Corpus in just 
one month. Moreover, one of the main reasons to use generic instead of domain-specific semantic roles is that they 
are reusable and one only needs to annotate a corpus once, no matter which domain it will be applied to. 
A number of improvements are still necessary to scale the system up to a realistic size. We have done little work on 
fine-tuning classifiers (e.g., using polynomial and RBF kernels in the SVM) and we have to implement a more 
advanced version of the semantic role pattern combination module. In future experiments, we will also test whether 
augmenting the results of the verb-specific sets with those of the aggregated example set (Table 3) improves overall 
accuracy. More verbs need to be annotated (an average of 300-350 annotated semantic patterns per verb seems 
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reasonable); more semantic classes need to be added; we will need to develop fixed annotation standards; and in the 
preprocessing phase, it will be necessary to introduce full phrase detection. 
The semantic classification of clauses in terms of conceptual categories has many applications in information 
retrieval, information extraction and other NLP tasks, especially when only a general understanding of the event 
structure of a text is needed. Good examples are question answering (QA) systems,5 which generate a precise answer 
to a natural language question (instead of giving a list of relevant documents) by extracting it from text databases. 
Current technologies mainly use traditional word-based information retrieval techniques to extract sentences with a 
potential answer from texts. The candidate answer sentence with the largest lexical and syntactic similarity is then 
used to generate the output answer. The introduction of semantic roles would allow us to better identify the question 
type and its corresponding candidate answer types and would bring event semantics in the selection process. In a 
similar way, developers of search engines might want to find related texts based on the events that they express 
rather than the words that they contain. In both search paradigms, information about semantic roles allows the user to 
zoom in or out on the content. In relaxed matching, similar semantic roles could be retrieved without matching 
lexical items; for very restricted matching, information could be retrieved both based on word matching and semantic 
classification.  
Semantic role classification could also help in (semi-)automatically constructing thesauri, semantic networks and 
ontologies (see e.g. Bateman, 1990). In many knowledge-intensive applications, knowledge of functional patterns 
would be a great asset to break away from pure inclusion relationships and to establish links between different word 
classes (e.g., verbs and nouns). One could also use semantic roles for discovering synonymy and other relationships 
in large corpora. An important application area of semantic classifications is information extraction, in which 
extraction patterns are built to detect very specific information in text (e.g., specific events or dates). Unlike the ad-
hoc extraction patterns that were used in previous systems and were only applicable in very restricted domains, our 
generic classification allows for a general understanding of states and events as they are expressed in general domain 
texts. Full text understanding will require huge amounts of domain and world knowledge and generic functional 
classification makes no pretension of providing such information. Nevertheless, it will be an indispensable first step 
in any sophisticated form of language understanding. 
 
 
5. Related research 
 
Semantic roles were introduced in the 6th century B.C. by the Indian grammarian Panini in his Ashtadhyayi (Vasu, 
1980; for an introduction see Kiparsky, 2000). Apart from the fact that he was the first to design a comprehensive 
formalized grammar of a language (i.e. Sanskrit), it is important for us that he assumed that every sentence expressed 
a particular action and its participants. His chain of language generation therefore starts with the assignment of 
generic semantic roles (the karakas) to linguistic expressions. 
The notion of semantic roles disappeared for the next 2500 years and was only unearthed in the 1960s in Fillmore's 
famous article on case grammar (Fillmore, 1968). His most fundamental argument is that the notion of case (i.e., the 
inflection of nouns, pronouns and adjectives as an expression of the function they have in a clause) is not so much 
connected to the lexicon, morphology or syntax but consists of a set of covert semantic roles. It is realized in the 
surface structure by a set of language-dependent transformation rules and as a consequence there has to be a regular 
mapping between the semantic deep structure and its surface realization (case markers, word order, grammatical 
roles, etc.). A few years later, Schank (1972) introduced a similar notion in the field of cognitive sciences. In his 
conceptual dependency theory, sentences are the surface realization of conceptual categories that are connected to 
generic action types (so-called ACTs). These conceptual representations are combined into multi-event frames that 
express the course of events for a stereotyped situation (Schank & Abelson, 1977). Unfortunately, Schank's 
conceptual categories were rather arbitrary and did not always correspond to how humans really conceptualized 
events. 
In 1975, Marvin Minsky introduced the notion of frames into artificial intelligence (Minsky, 1975), a frame being a 
data-structure that contains attribute-value slots and represents a stereotyped state. From that time on, domain-

                                                        
5 See the TREC conferences: http://trec.nist.gov/ 
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dependent frames slowly replaced the original linguistic idea of generic semantic roles. Detection of these frames 
was considered to be a pattern classification task, in which the classification patterns were manually drafted (e.g., 
DeJong, 1977; Hobbs et al., 1996; Harabagiu & Maiorano, 2000), learned from labeled examples (e.g., Riloff & 
Schelzenbach, 1998; Soderland, 1999; Craven et al., 2000) or partly trained from unlabelled examples (Riloff, 1996). 
Systems were developed for very limited subject domains and could hardly be ported to other domains, although 
information-rich approaches to semantic parsing which rely on huge databases of formalized world knowledge (e.g. 
Hahn, 1989) have been proposed in an attempt to deal with these limitations.   
Recently, there have been a number of attempts to detect generic semantic roles in text. Most related to our research 
is the work of Gildea & Jurafsky (2002) and Fleischman, Kwon & Hovy (2003), who rely on domain-independent 
roles as defined in the FrameNet case frame dictionary (Johnson et al., 2001). They take into account positional, 
grammatical and lexical features, the main difference with our work being that both use full syntactic parsing. When 
training on 18 abstract semantic roles with manually assigned phrase boundaries, Gildea and Jurafsky obtained an 
average accuracy of 82.1 %, which is consistent with our results. For more specific semantic roles, their results are 
slightly lower. Their classifier learns various probability distributions of combined semantic features and assigns the 
most probably role to a new instance by interpolated summation of the individual distributions that apply for the new 
instance. We have increased our basic accuracy by adding knowledge about valid combinations of roles to the 
system.  
In linguistics, semantic roles gave birth to diverse strands of functional grammar (e.g., Dik, 1979; Halliday, 1994; 
Givon, 2001), which started from the hypothesis that language arose as an expression of how humans conceived 
reality and therefore strongly focused on the process-semantic analysis of linguistic phenomena. Most functionalist 
approaches explicitly postulate the existence of a regular (though not necessarily isomorphic) mapping between the 
semantic stratum and the linguistic surface. By using a semantic classification scheme based on systemic-functional 
grammar our experiments have demonstrated the existence of this mapping. 
 
 
6. Conclusion 
 
In the research presented in this article, we have developed a method for learning individual functional-semantic 
roles from an annotated corpus by reducing the problem to a pattern classification task. In doing this, we have shown 
that there exists a regular mapping between the linguistic surface organization of a text and its hidden semantic deep 
structure, as has been postulated in functional linguistics. We avoid the randomness and domain-dependence of 
previous approaches by implementing a generic linguistic framework and cut down on development time by using a 
domain-independent, reusable corpus. Although there are a number of limitations to learning semantic roles and 
experiments were conducted in a restricted research setting, there is no indication that this would hinder our 
techniques from being implemented in a functioning system. Being able to unambiguously analyze the event 
structure of a text, numerous applications will benefit from using generic semantic roles. We therefore hope that our 
research is at least a small step step forward on the road to a future in which computers will slowly learn to 
understand what humans write and say. 
 
 
Acknowledgements 
 
This research was funded by the Institute for the Promotion of Innovation by Science and Technology in Flanders. 
We thank Roxana Angheluta and Rudradeb Mitra for their programming help and building the annotation tool and 
Koen Plevoets for his enthusiasm in a work as boring as annotating a corpus. 
 
 
References 
 
Aha, D.W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning 6 :1, 37-66. 
Bateman, J. (1990). Upper modeling: a general organization of knowledge for natural language processing. In Proceedings of the 5th International 

Workshop on Natural Language Generation. Pittsburgh, PA. 



– 14 – 

Berger, A., Della Pietra, S.A., & Della Pietra, V.J. (1996). A maximum entropy approach to natural language processing. Computational 
Linguistics, 22, 39-71. 

Chao, G., & Dyer, M. (2002). Maximum entropy models for word sense disambiguation. In COLING 2002. Proceedings of the 19th International 
Conference on Computational Linguistics  (pp. 155-161). New Brunswick, NJ: ACL. 

Chieu, H.L., & Ng, H.T. (2002). Named entity recognition: A maximum entropy approach using global information. In COLING 2002. 
Proceedings of the 19th International Conference on Computational Linguistics (pp. 160-167). New Brunswick, NJ: ACL. 

Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. In Proceedings of NAACL-2000 (pp. 132-139).  New Brunswick, NJ: ACL. 
Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam,  K., & Slattery, S. (2000). Learning to construct knowledge bases 

from the World Wide Web. Artificial Intelligence, 118:1-2, 69–113.  
Daelemans, W. (1999). Machine learning approaches. In H. van Halteren (Ed.), Syntactic Wordclass Tagging. Dordrecht: Kluwer Academic 

Publishers. 
De Busser, R., Angheluta, R. & Moens, M.-F. (2002). Semantic case role detection for information extraction. In COLING 2002 - Proceedings of 

the 19th International Conference on Computational Linguistics (pp. 1198-1202). New Brunswick: ACL. 
DeJong , G. (1977). Skimming newspaper stories by computer. In R. Reddy (ed.), Proceedings of the 5th International Joint Conference on 

Artificial Intelligence (p. 16). Cambridge, MA: William Kaufman. 
Dik, S. (1979). Functional Grammar. Amsterdam: North-Holland. 
Fillmore, C. (1985). Frames and the semantics of understanding. Quaderni di Semantica, 6:2, 222-254. 
Fillmore, C. J. (1968). The case for case. In E. Bach, & R.T. Harms (Eds.), Universals in Linguistic Theory. New York: Holt, Rinehard and 

Winston. 
Fleischman, M., Kwon, N., & Hovy, E. (2003). Maximum entropy models for FrameNet classification. In Empirical Methods in Natural 

Language Processing. New Brunswick, NJ: ACL. 
Gildea, D., & Jurafsky, D. (2002). Automatic labelling of semantic roles. Computational Linguistics, 28:3, 245-288. 
Givon, T. (2001). Syntax. An Introduction. Amsterdam: John Benjamins Publishing Company. 
Hahn, U. (1989). Making understanders out of parsers: semantically driven parsing as a key concept for realistic text understanding applications. 

International Journal of Intelligent Systems, 4:3, 345-339. 
Halliday, M.A.K., & Matthiessen, C. (1999). Construing Experience Through Meaning. A Language-based Approach to Cognition. London: 

Cassell. 
Halliday, M.A.K. (1994). An Introduction to Functional Grammar. London: Arnold. 
Harabagiu, S.M., & Maiorano, S. (2000). Acquisition of linguistic patterns for knowledge-based information extraction. In Proceedings of LREC-

2000. Athens, Greece. 
Hayes, P.J. (1992). Intelligent high-volume text processing using shallow, domain-specific techniques. In P.S. Jacobs (Ed.), Text-Based Intelligent 

Systems: Current Research and Practice in Information Extraction and Retrieval. Hillsdale: Lawrence Erlbaum. 
Hobbs, J.H., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel, M., & Tyson, M. (1996). FASTUS: A cascaded finite-state transducer for 

extracting information from natural-language text. In E. Roche, & Y. Schabes (Ed.), Finite State Devices for Natural Language Processing. 
Cambridge, MA: MIT Press. 

Isozaki, H., & Kazawa, H. (2002). Efficient support vector classifiers for named entity recognition. In Coling 2002. Proceedings of the 19th 
International Conference on Computational Linguistics (pp. 390-396). San Fransciso, CA: Morgan Kaufman. 

Johnson, C.R., Fillmore, C.J., Wood, E.J., Ruppenhofer, J., Urban, M., Petruck, M.R.L., & Baker, C.F. (2001). The FrameNet Project: Tools for 
Lexicon Building. URL: http://www.icsi.berkeley.edu/~framenet/book/book.html. 

Kiparsky, P. (2000). On the Architecture of Panini's Grammar. Three lectures delivered at the Hyderabad Conference on the architecture of 
grammar, Jan. 2002, and at UCLA, March 2002. 

Leech, G., Rayson, P., & Wilson, A. (2001). Word Frequencies in Written and Spoken English: Based on the British National Corpus. London: 
Longman. 

Mikheev, A. (1997). Part-of-speech guessing rules: Learning and evaluation. Computational Linguistics, 23:3, 405-423. 
Mikheev, A. (2000). Document centered approach to text normalization. In N.J. Belkin, P. Ingwersen, & M. Leong (eds.), SIGIR 2000: 

Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 136-143). 
Athens, Greece: ACM. 

Minsky, M. (1975). A framework for representing knowledge. In P.H. Winston (Ed.), The Psychology of Computer Vision. New York: McGraw-
Hill. 

Mitchell, T.M. (1997). Machine Learning. Boston, MA: McGraw-Hill. 
Pedersen, T. (2000). A simple approach to building ensembles of naïve Bayesian classifiers for word sense disambiguation. In Proceedings of the 

First Meeting of the NAACL-00, Seattle, WA, May, 1-3 2000. 
Quinlan, R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann. 
Ratnaparkhi, A. (1997). A Simple Introduction to Maximum Entropy Models for Natural Language Processing. Technical Report 97-08. IRCS, 

Philadelphia, PA: University of Pennsylvania. 
Riloff, E., & Schelzenbach, M. (1998). An empirical approach to conceptual case frame acquisition. In Proceedings of the Sixth Workshop on 

Very large Corpora. Montreal, Canada. 
Riloff, E. (1996). Automatically generating extraction patterns from untagged text. In Proceedings of the Thirteenth National Conference on 

Artificial Intelligence (pp. 104-1049). Menlo Park, CA: AAAI. 
Schank, R.C., & Abelson, R.P. (1977). Scripts, Plans, Goals and Understanding. An Inquiry into Human Knowledge Structures. Hillsdale, NJ: 

Erlbaum. 
Schank, R.C. (1972). Conceptual dependency: A theory of natural language understanding. Cognitive Psychology, 3, 552-631. 
Soderland, S. (1999). Learning information extraction rules for semi-structured and free text. Machine Learning, 34:1, 233-272. 
Vapnik, V. (1995).  The Nature of Statistical Learning Theory. Springer.  



– 15 – 

Vasu, S.C.  (1980). The Ashtadyayi of Panini. Delhi: Motilal Banarsidass. 
Winograd, T. (1975). Frame representations and the declarative/procedural controversy. In D. Bobrow & A. Collins (Eds.), Representation and 

Understanding. Studies in Cognitive Science. New York: Academis Press. 
Witten, I.H., & Eibe, F. (2000). Data Mining. Practical Machine Learning Tools and Techniques with Java Implementations. San Fransisco: 

Morgan Kaufmann. 


